Tag 6 Folgt
6.1 Lösung Tag 5
library(tidyverse)
library(broom)
6.1.1 Mit den Datasaurus Dozen Datensets
::datasaurus_dozen datasauRus
Visualisiere alle Sets gemeinsam in einem ggplot Scatterplot, nutze dazu
facet_wrap
.Füge mittels
geom_smooth
lineare Trendlinien hinzuFitte eine Lineare Regression and jedes der Datensets. Nutze dazu die Techniken aus R4DataScience: Many Models und das
broom
package.Analysiere die Fits.
<- datasauRus::datasaurus_dozen
dinos dinos
%>%
dinos count(dataset)
%>%
dinos ggplot(aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap("dataset", scales = "free_y") +
::theme_few() ggthemes
<- dinos %>%
nested_dinos group_nest(dataset)
nested_dinos
<- nested_dinos$data[[1]]
beispiel
<- lm(y ~ x, data = beispiel)
model summary(model)
glance(model)
tidy(model)
coef(model)
<- nested_dinos %>%
all_models mutate(
model = map(data, ~ lm(y ~ x, data = .x)),
glance = map(model, glance),
coefficients = map(model, coef),
corr = map(data, ~ cor(.x$x, .x$y))
) all_models
%>%
all_models select(dataset, coefficients) %>%
unnest_wider(coefficients)
%>%
all_models select(dataset, corr) %>%
unnest_wider(corr)